Abstract

The results of numerical simulation of heat and mass transfer in an ejection apparatus during condensation of vapor–gas mixture components on cold brine droplets are presented. The local parameters of working flows were determined by solving a system of differential heat transfer equations with account for the hydrodynamic pattern. Calculations were carried out on the assumption that the liquid spray is directed horizontally. The Stefan formula has been derived with reference to a spherical coordinate system. The results of calculation of heat and mass transfer rates with and without regard for steam condensation jointly with hydrocarbon vapors are compared and analyzed. Estimation of the effect exerted by the apparatus and drip pan walls on the general process of heat and mass transfer was carried out. The results of simulation made it possible to quantitatively estimate the influence of the adopted thickness of the diffusional boundary layer on the vapor–air mixture cooling effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call