Abstract

Circulation control (CC) is used extensively to control the attitude of rudderless aircraft experiencing ground effect in take-off and landing phases. The investigation of ground effect on airfoil CC is necessary to improve flight performance and quality in proximity to the ground. The aerodynamics and flow field of a modified NACA0012 airfoil with CC in ground effect are investigated with numerical simulations. The compressible Reynolds-averaged Navier–Stokes equations with the shear-stress transport k − ω turbulence model equations are solved using the Finite Volume Method (FVM). Simulation results show that the ground effect changes the lift increment per unit jet momentum coefficient, and CC can reverse the polarity ground effect. The effective angle of attack α E and the downwash space downstream airfoil are altered by the ground effect resulting in variations of airfoil surface pressure and lift. Unlike the unbounded flow field, the jet attachment distance is not only determined by the jet momentum coefficient but it can change with the ride height, which is the distance from the ground to the center of the semicircular Coanda surface, for the same jet momentum coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.