Abstract

The ever-expanding urban architecture in developing areas requires more land space for construction purposes to be available. For this, utilizing the sub-surface areas through excavations in populous cities is now on the increasing trend. Two major concerns in such excavation projects are excavation-wall stability and the induced ground settlements which can be countered by a soil nailing-ground anchor system. In this regard, influential factors such as nail length and nail inclination angles can affect the overall performance of stabilized ground. Therefore, the focus of the present study is on how the aforementioned influence excavation-induced ground deformations. The numerical simulation is conducted using the software Plaxis 2D. The established numerical models help to explain how changes in the nails’ inclination angles and anchor lengths can change the observed behavior of the walls; from which helpful tips for practicing engineers are drawn accordingly. Such results could also be utilized for classroom presentations to aid students’ understanding of geotechnical engineering concepts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.