Abstract

ABSTRACT This paper presents a numerical method for calculating the granular Couette flows between two parallel plates. A kinetic model which includes the frictional energy loss effects is employed, and the equations of motion are solved using a numerical iterative method. The boundary conditions are satisfied by ensuring the balance of momentum and energy at such boundaries. The mean velocity, the fluctuation kinetic energy and the solid volume fraction profiles are evaluated under a variety of conditions. The mean velocity profiles are compared with the molecular dynamic simulation results, and good agreement is observed. The study shows that the slip velocity may vary considerably depending on the surface roughness, coefficient of restitution and friction coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call