Abstract

Granite is a kind of typical discrete material, which experiences from continuous deformation stage, discontinuous deformation stage to fracture stage under sawing forces. Using discrete element method (DEM) to study the process of sawing granite will help us to understand the removal mechanism of granite from the microscopic point of view. In this paper, numerical uniaxial compression and three-point bending tests were conducted to determine the microscopic parameters of the granite specimen firstly, and then simulation was performed for sawing of the specimen. The sawing process, deformation characteristics of granite and the effect of initiation and propagation of cracks on fracture process of granite were investigated. The emphasis was laid on analyzing the variation of sawing forces under different sawing parameters. The simulation results agree well with that of experiments, indicating that DEM can reflect the external macroscopic change of granite by changing the internal microscopic structure. The conclusions in this study would be useful to the modeling of sawing processes and engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.