Abstract
A numerical procedure for the prediction of fogging and defogging phenomena is presented. The simulation involves the solution of an air flow field along a cold solid surface, the evaluation of the unsteady conduction through the solid itself, and a model for the heat and mass transfer within the thin water layer on the fogged surface. A suite of routines for the unsteady simulation of the water layer evolution is coupled with an equal order finite element Navier Stokes solver and a finite volume conduction code. The procedure is fully independent of the numerical details of the solid and fluid domain solvers. Two different coupling approaches may be followed: A loose one, where the Navier Stokes solution is used only for a steady state estimate of the heat transfer coefficient, or a close one, where the Navier Stokes, conduction and water layer codes are iterated simultaneously. The latter is required for the problem of natural convection, where temperature (and thus the energy balance of the water layer...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.