Abstract

Several reinforcing strategies have recently been developed to overcome glass brittleness and numerical simulations are essential to investigate the structural behaviour of such hybrid systems. Based on previous experimental results from monotonic quasi-static tests, this paper presents a numerical study about the flexural behaviour of glass beams reinforced with glass fibre reinforced polymer (GFRP) laminates bonded with two different adhesives: polyurethane and epoxy. The main objective of this study is to evaluate the efficiency of different constitutive models to simulate the non-linear behaviour of glass, considering the following factors: initial stiffness, cracking load, post-cracking stiffness, crack pattern and progressive failure. The glass is simulated using smeared crack (SCM) and damaged plasticity (DPM) models with static and dynamic numerical approaches. Particular attention is paid to the influence of the several parameters that influence the structural behaviour of glass (e.g. threshold angle), as well as to the interfaces between all the materials involved (e.g. thickness of the adhesive layer). In relation to static numerical approaches, dynamic numerical approaches require more computational effort and their dynamic effects may influence the structural responses obtained; however, they also show to be able to capture all the stages of cracking in greater detail, because stability during cracking formation is guaranteed even at smaller loading stages. Since DPM models do not allow considering a maximum absolute damage factor of 1.0, the smeared crack models simulate better the non-linear behaviour of glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call