Abstract

Experiment on the constitutive model of fiber reinforced concrete with volume fraction of alkali-resistant glass fiber of, respectively, 0.0%, 0.5%, 1.0%, and 1.5% was conducted, and the constitutive relation of tension stress-strain full curve of GFRC shaft was obtained; the constitutive relation of GFRP is obtained by experiment, and the secant modulus was obtained by the fitting of univariate cubic equation. The finite element numerical simulation of GFRP fiber reinforced concrete beam was carried out, and the load deflection nephogram of fiber reinforced concrete beam, strain nephogram, crack nephogram, and GFRP stress nephogram were obtained. When the fiber content is 1.0%, the bearing capacity of GFRP reinforced concrete beams is the best, and it could play a “bridging” effect when the incorporation of fiber is within the load range of about 60%, which inhibited the developing speed of cracks, but with the gradual increase of the load, the “bridging” effect disappeared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.