Abstract

Abstract In this paper, the development of a three-dimensional, two-phase fluid flow model (Modified Embedded Discrete Fracture Model) to study flow performances of a fractured horizontal well in deep-marine shale gas is presented. Deep-marine shale gas resources account for nearly 80% in China, which is the decisive resource basis for large-scale shale gas production. The dynamic characteristics of deep shale gas reservoirs are quite different and more complex. This paper uses the embedded discrete fracture model to simulate artificial fractures (main fractures and secondary fractures) and the dual-media model to simulate the mixed fractured media of natural fractures and considers the flow characteristics of partitions (artificial fractures, natural fractures, and matrix). Gas desorption is considered in the matrix. Different degrees of stress sensitivity are considered for natural and artificial fractures. Aiming at accurately simulating the whole production history of horizontal well fracturing, especially the dynamic changes of postfracturing flowback, a postfracturing fluid initialization method based on fracturing construction parameters (fracturing fluid volume and pump stop pressure) is established. The flow of gas and water in the early stage after fracturing is simulated, and the regional phase permeability and capillary force curves are introduced to simulate the process of flowback and production of horizontal wells after fracturing. The influence of early fracture closure on the gas-water flow is characterized by stress sensitivity. A deep shale gas reservoir of Sinopec was selected for the case study. The simulation results show it necessary to consider the effects of fractures and stress sensitivity in the matrix when considering the dynamic change of production during the flowback and production stages. The findings of this study can help for better understanding of the fracture distribution characteristics of shale gas, shale gas production principle, and well EUR prediction, which provide a theoretical basis for the effective development of shale gas horizontal well groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call