Abstract

In this paper the fretting wear simulation technique with the press-fitted specimens have been developed, which can consider the running-in period of total wear process by adopting nonlinear wear coefficient. The amount of microslip and contact variable at press-fitted and at bending loaded condition of press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the predicted wear profiles considering the running-in period with nonlinear wear coefficent is consistent with experimental results than that with constant wear coefficient. Therefore, the fretting wear simulation technique proposed is feasible and efficient for numerical simulation of fretting wear on press fits at the initial stage of fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.