Abstract

The generation of freak waves in a 2-dimensional random sea state characterized by the JONSWAP spectrum are simulated employing a nonlinear fourth-order Schrödinger equation. The evolution of the freak waves in deep water are analyzed. We investigate the effect of initial wave parameters on kurtosis and occurrence of freak waves. The results show that Benjamin-Feir index (BFI) is an important parameter to identify the presence of instability. The kurtosis presents a similar spatial evolution trend with the occurrence probability of freak waves. Freak waves in a random sea state are more likely to occur for narrow spectrum and small values of significant wave height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.