Abstract

We introduce a discrete fracture network model of stationary Darcy flow in fractured rocks. We approximate the fractures by a network of planar circle disks, which is generated on the basis of statistical data obtained from field measurements. We then discretize this network into a mesh consisting of triangular elements placed in three-dimensional space. We use geometrical approximations in fracture planes, which allow for a significant simplification of the final triangular meshes. We consider two-dimensional Darcy flow in each fracture. In order to accurately simulate the channeling effect, we assign to each triangle an aperture defining its hydraulic permeability. For the discretization we use the lowest order Raviart-Thomas mixed finite element method. This method gives quite an accurate velocity field, which is computed directly and which satisfies the mass balance on each triangular element. We demonstrate the use of this method on a model problem with a known analytical solution and describe the generation and triangulation of the fracture network and the computation of fracture flow for a particular real situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.