Abstract

AbstractIn this work, different stages of gas production in shale reservoirs are modelled. First, hydraulic fracturing is considered by injecting water at high pressures to crack the formation and increase the flow capacity of the reservoir. During the fluid injection, rock properties are modified and water appears in the stimulated area. Then, these changes can be detected through seismic monitoring. Finally, once the fracking stage is completed, the simulation of gas production begins. The simultaneous gas–water flow in the injection and production stages is modelled using the Black‐Oil formulation. Furthermore, a fracture criterion is applied under the hypothesis of constant temperature and constant stress field in this first analysis of the problem. The numerical simulations allow us to analyse the propagation of the fracture and the behaviour of the pore pressure and water saturation in the stimulated area. The advance of the fracturing fluid is delayed in relation to the breakdown of the rock. Besides, the presence of new fractures is detected by applying a poroviscoelastic wave propagation simulator that considers mesoscopic losses induced by heterogeneities in rock and fluids. After the fracture network is created, the injection well becomes a producer, allowing the extraction of gas and the flowback of the injected fluid. The simulated gas flow rates are compared with those obtained by a simplified single‐phase analytical solution used for practical applications, achieving optimum matching results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call