Abstract

This work is concerned with numerical analyses of the forming behavior of magnesium at elevated temperature. For that purpose, a thermodynamically consistent, rate-dependent, finite-strain elasto-plastic constitutive model is presented. This model captures the stress differential effect as well as the anisotropy of magnesium. Furthermore, the change in shape of the yield locus (distortional hardening) is also taken into account. This constitutive law, together with its parameter calibration based on uni-axial tensile tests, is finally combined with the localization criterion originally proposed by Marciniak and Kuczynski and applied to the simulation of forming limit test. Comparisons to experiments show the excellent predictive capabilities of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.