Abstract

The formation and breakup of an axisymmetric immiscible, viscous, laminar compound jet flowing vertically downward into and breaking up in another immiscible liquid is studied numerically. We use a front-tracking/finite difference method to track the unsteady motion and the breakup of the compound jet interfaces, which are governed by the incompressible Navier-Stokes equations for Newtonian fluids. We consider the formation and breakup of a three-fluid compound jet in which the inner fluid density is greater than the shell’s fluid density, and compare with the case when the inner fluid density is less than the shell’s fluid density. The effects of interfacial tensions in terms of Weber number are investigated. An increase in Weber number leads to an increase in the breakup length of the compound jet and a decrease in the size of compound drops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.