Abstract

A modified two-dimensional two-phase mathematical model of forest wildfires propagation is considered. The model is based on the averaging of three-dimensional equations of two-phase medium over the height of the forest fuel (FF) layer and it includes the (k‒e)-turbulence model with additional turbulence production and dissipation terms in the forest layer and the Eddy Break-up Model for the combustion rate in the gas phase. The developed model can be used to carry out numerical simulation of the forest fire-front propagation under the conditions of a heterogeneous FF distribution, the presence of obstacles to the fire propagation, and the wind effects. This model can be used for real-time computation of the fire propagation, for expert assessments of emergency situations, and for assessments of the damage caused by forest fires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.