Abstract

PurposePorous medium has always been introduced as an environment for increasing heat transfer in cooling systems. However, increase in heat transfer and resolving pressure drop in the fluid flow have been focused on by researchers.The purpose of this paper is to study the effects of creating porous micro-channels inside porous macro-blocks to optimize system performance in channels.Design/methodology/approachTo simulate flow field, a developed numerical code that solves Navier–Stokes equations by finite volume method and semi-implicit method for pressure linked equations (SIMPLE) algorithm will be used together with bi-disperse porous medium (BDPM) method. Working fluid is air with Pr = 0.7 in laminar state. Influence of permeability changes by creation of micro-channels containing porous medium in vertical, horizontal and cross-shape patterns will be investigated.FindingsBy creating porous micro-channels inside macro-blocks, not only does the heat transfer increase significantly but the pressure also drops remarkably. Increase in performance evaluation criteria (PEC) is more evident in lower Reynolds numbers that can increase the PEC to 75 per cent by creating cross-shape micro-channels. By changing the permeability of micro-channels, PEC will increase by reducing the pressure drop but it has minor changes in Nu.Research limitations/implicationsThe current work is applicable to optimizing system performance by decreasing the pressure drop and increasing the heat transfer.Practical implicationsThe developed patterns are useful in increasing the system performance including the increase in heat transfer and decrease in pressure drop in systems such as air coolers required in electrical circuits.Originality/valueDevelopment and optimization of system performance by new patterns using BDPM in comparison to the previous patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.