Abstract

The crave of flexibility and light weight in some electronic device triggers the replacement of rigid printed circuit board (RPCB) with flexible printed circuit board (FPCB). However, the deflection and von Mises stress of FPCB caused by air flow are far more critical compared to RPCB. In the present study, effect of various Reynolds numbers (Re) and quantity of BGA packages attached on the FPCB toward FPCB’s deflection and von Mises stress are investigated. The numerical simulation was performed using FLUENT and ABAQUS, coupled online by Mesh-based Parallel Code Coupling Interface (MpCCI). The results show that the maximum deflection divided by characteristic length and von Mises stress occurs at maximum Re on Case E. Findings indicate both Re and quantity of BGA packages have major effect on the responses. However, the effect of Re is higher than the quantity of BGA packages attached on the FPCB. Thus, both factors should be considered when designing FPCB which is exposed to flow environment and extreme operating condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call