Abstract

A model of a fluidized bed coupled with direct carbon solid oxide fuel cell (SOFC) is developed to explore the effect of coupling between fluidized bed and solid oxide fuel cell. Three gas–solid flow regimes are involved including fixed bed, delayed bubbling bed and bubbling bed. The anode reaction of SOFC is treated as the coupling processes of Boudouard gasification of carbon and electrochemical oxidation of CO. The effects of inlet velocity of the fluidizing agent CO2, carbon activity, channel width and coupling extent on the system performance are investigated. The results show that the inlet velocity of CO2 can promote the gasification rate in the anode, but too high velocities may lower CO molar fraction. The gasification rate generally increases with the increase of the channel width and carbon activity. The overlapping area between the anode surface and the initial carbon bed, gas–solid regime and carbon activity have a significant influence on the gasification rate and the maximum current density the system can support. Overall, the mass transport in the anode is dramatically enhanced by the expansion of the carbon bed, back-mixing, solid mixing and gas mixing, especially for the delayed bubbling bed and bubbling bed. This indicates that the adopted coupling method is feasible to improve the anode performance of direct carbon solid oxide fuel cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.