Abstract
In this work, we deal with the 1D compressible fluid coupled with elastic solid in an Eulerian-Lagrangian system. To facilitate the analysis, the Naviers equation for elastic solid is cast into a 2×2 system similar to the Euler equation but in Lagrangian coordinate. The modified Ghost Fluid Method is employed to treat the fluid-elastic solid coupling, where an Eulerian-Lagrangian Riemann problem is defined and a nonlinear characteristic from the fluid and a Riemann invariant from the solid are used to predict and define the ghost fluid states. Theoretical analysis shows that the present approach is accurate in the sense of approximating the solution of the Riemann problem at the interface. Numerical validation of this approach is also accomplished by extensive comparison to 1D problems (both water-solid and gas-solid) with their respective analytical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.