Abstract

The flow in tight rod bundles is characterized by long-term, large-scale coherent patterns in the stream-wise direction. In the present work, the issue of simulating these structures through unsteady CFD simulations employing periodic boundary conditions in the stream-wise direction, will be addressed. The validity of the approach is assessed through the comparison of a large eddy simulation (LES) for similar flow conditions inside a simplified geometry and experimental data. A powerful statistical tool (proper orthonormal decomposition) is used to analyze the time varying solution. The flow field has been decomposed into a series of normal modes, identifying the structures responsible for the flow transfer between sub-channels. Additional insights on the physics of these coherent structures are obtained. An unsteady Reynolds averaged Navier–Stokes simulation (URANS) of the flow in a rod bundle has then been carried out. The comparison between numerical results and experimental results [Krauss, T., Meyer, L., 1998. Experimental investigation of turbulent transport of momentum and energy in a heated rod bundle. Nucl. Eng. Design 180, 185–206] proves that accuracy can be achieved for averaged statistics such as stream-wise velocity, turbulent intensity and wall shear stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.