Abstract

The aeroacoustic mechanisms in human voice production are complex coupled processes, which are not fully understood until now. The paper presents a hybrid numerical approach to the solution of the acoustic field in human vocal tract, when the fluid flow is first solved by a dedicated CFD solver on a fine computational mesh covering the larynx. Subsequently, the acoustic sources and propagation of the sound waves are calculated by Lighthill's analogy or acoustic perturbation equations on a coarse mesh covering the whole vocal tract including radiation region. The CFD simulation was run in parallel on a SGI Altix UV shared-memory supercomputer; strong and weak parallel performance was tested for up to 50 computational cores. The spectra of the radiated sound for two vowels/i/and/u/evaluated from the acoustic simulation show good agreement with the formant frequencies known from human subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.