Abstract

PurposeOver the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction (FSI). In the current study, numerical simulations for flow around a fixed circular cylinder are performed at Reynolds number (Re) = 3900 with the LES method using the ICEM-CFD and ANSYS Fluent tool for meshing and analysis, respectively. Previously, similar studies have been conducted at the same Reynolds number, but there have been discrepancies in the results, particularly in calculating the recirculation length and angle of separation. In addition, the purpose of this study is to address the impact of time interval averaging to obtain the fully converged solution.Design/methodology/approachThis study presents the LES method, using the ICEM-CFD and ANSYS fluent tool for meshing and analysis.FindingsIn the current study, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1). The recirculation length, angle of separation, hydrodynamic coefficients and the wake behind the cylinder are investigated up to ten diameters. The drag coefficient and Strouhal number are observed to be less sensitive, whereas the recirculation length appeared to be highly dependent on the average time statistics and the non-dimensional time step. Similarly, the mean streamwise and cross-flow velocity are observed to be sensitive to the average time statistics and non-dimensional time step in the wake region near the cylinder.Originality/valueIn the current investigation, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1), using large eddy simulation method at Re = 3900 around a circular cylinder. The impact of time interval averaging to obtain the fully converged mean flow field is addressed. No such consideration is yet published in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.