Abstract

A numerical investigation is carried out to analyze the flow patterns, drag and lift coefficients, and vortex shedding around a square cylinder using a control circular bar upstream and downstream. Lattice Boltzmann method (LBM) was used to investigate flow over a square cylinder controlled by upstream and downstream circular bar, which is the main novelty of this study. Compared with those available results in the literature, the code for flow over a single square cylinder proves valid. The Reynolds number (Re) based on the width of the square cylinder ([Formula: see text]) and diameter of circular bar ([Formula: see text]) are 100 for square cylinder, 30 and 50 for different circular bars. Numerical simulations are performed in the ranges of [Formula: see text] and [Formula: see text], where [Formula: see text] and [Formula: see text] are the center-to-center distances between the bar and cylinder. Five distinct flow patterns are observed in the present study. It is found that the maximum percentage reduction in drag coefficient is 59.86% by upstream control bar, and the maximum percentage reduction in r.m.s. lift coefficient is 73.69% by downstream control bar. By varying the distance ratio for the downstream control bar, a critical value of distance ratio is found where there are two domain frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call