Abstract
The usage of flow-diverting stents in the treatment of intracranial aneurysms is widespread due to their high success and low complication rates. However, their use is still not officially recommended for bifurcation aneurysms, as there is a risk of generating ischemic complications due to the reduced blood flow to the jailed branch. Many works utilize computational fluid dynamics (CFD) to study how hemodynamic variables respond to flow diverter placement, but few seem to use it to verify flow variation between branches of bifurcation aneurysms and to aid in the choice of the best ramification for device placement. This investigation was performed in the present work, by comparing wall shear stress (WSS) and flowrates for a patient-specific scenario of a middle cerebral artery (MCA) aneurysm, considering device placement on each branch. A secondary objective was to follow a methodology that provides fast results, envisioning application to daily medical practice. The device was simplified as a homogeneous porous medium, and extreme porosity values were simulated for comparison. Results suggest that stent placement on either branch is both safe and effective, significantly reducing WSS and flow into the aneurysm while maintaining flow to the different ramifications within acceptable thresholds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.