Abstract

Fluid flow and heat transfer characteristics outside a vibrating tube were numerically simulated by the dynamic mesh method. The mechanism of heat transfer enhancement via periodic vibration of the tube was explored by using the field synergy principle. It is found that the field synergy angle between fluid velocity vector and temperature gradient vector for a periodically vibrating tube is significantly smaller than that for a stationary tube, and it changes approximately according to the sinusoidal law in a vibration period. The effect of time phase of the vibration on the field synergy angle and convective heat transfer coefficient were also discussed. Results indicate that the vibration can enhance heat transfer and this effect is more remarkable when time phase angle ranges between 50° and 140° in a half period. Especially when the time phase angle is 90°, the average field synergy angle outside the tube reaches the minimum, which leads to the best heat transfer performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call