Abstract

Flame propagation and Deflagration-to-Detonation Transition (DDT) in a two-dimensional obstructed channel filled with stoichiometric ammonia-hydrogen-oxygen mixtures are simulated with detailed chemistry. For mixtures of high ammonia molar ratio (α = 4:1 and 2:1), a hot spot with high temperature appears in the unreacted material, and then DDT is triggered by the reactivity gradient inside a pocket of unreacted material for α = 2:1. However, for α = 4:1, detonative initiation and failure alternatively occur. For mixtures with low ammonia ratios, the DDT is triggered when the flame interacts with the reflected shock waves from either the bottom wall or the obstacle. Furthermore, as the concentration of ammonia decreases, the flame acceleration, the appearance of noticeable shocks and the deflagration-to-detonation transition occur at an earlier instant, and the ultimate propagation velocities of detonation wave increase. The flame cannot propagate stably in premixed ammonia-oxygen mixture without hydrogen with the ignition mode adopted in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.