Abstract

Ferrofluids are suspensions of magnetic particles of diameter approximately 10 nm stabilized by surfactants in carrier liquids. The large magnetic susceptibility of ferrofluids allows the mobilization of ferrofluid through permeable rock and soil by the application of strong external magnetic fields. We have developed simulation capabilities for both miscible and immiscible conceptualizations of ferrofluid flow through porous media in response to magnetic forces arising from the magnetic field of a rectangular permanent magnet. The flow of ferrofluid is caused by the magnetization of the particles and their attraction toward a magnet, regardless of the orientation of the magnet. The steps involved in calculating the flow of ferrofluid are (1) calculation of the external magnetic field, (2) calculation of the gradient of the external magnetic field, (3) calculation of the magnetization of the ferrofluid, and (4) assembly of the magnetic body force term and addition of this term to the standard pressure gradient and gravity force terms. We compare numerical simulations to laboratory measurements of the magnetic field, fluid pressures, and the two‐dimensional flow of ferrofluid to demonstrate the applicability of the methods coded in the numerical simulators. We present an example of the use of the simulator for a field‐scale application of ferrofluids for barrier verification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call