Abstract

Numerical simulations of fatigue crack growth of welded structural component were performed under fatigue testing conditions with block loading and constant stress range and the fatigue crack growth profiles were measured under the same loading conditions. In the experiments, fatigue cracks developed at the boxing fillet welded toe and grew toward the top flange plates of the specimens. An advanced fracture mechanics approach based on the improved effective stress intensity factor range, which is the RPG (Re-tensile Plastic zone Generating) stress criterion, was applied to perform the numerical simulations of fatigue crack growth in the modeled components. A comparison of estimated fatigue crack growth profiles with measured ones verified that a reasonable estimation of fatigue crack growth can be estimated by applying the proposed numerical method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.