Abstract
A reinforced concrete shear wall is an important building structure. Once damage occurs, it not only causes great losses to various properties but also seriously endangers people's lives. It is difficult to achieve an accurate description of the damage process using the traditional numerical calculation method, which is based on the continuous medium theory. Its bottleneck lies in the crack-induced discontinuity, whereas the adopted numerical analysis method has the continuity requirement. The peridynamic theory can solve discontinuity problems and analyze material damage processes during crack expansion. In this paper, the quasi-static failure and impact failure of shear walls are simulated by improved micropolar peridynamics, which provides the whole process of microdefect growth, damage accumulation, crack initiation, and propagation. The peridynamic predictions are in good match with the current experiment observations, filling the gap of shear wall failure behavior in existing research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.