Abstract

Results of simulation study of evolution of solitary intensive second-sound waves spreading in superfluid helium are presented. Quantitative description was carried out on the basis of equations of hydrodynamics of superfluid turbulence (HST). HST equations with second-order accuracy (relative parameter deviation from equilibrium) were written for the cases of planar, cylindrical, and spherical geometries. The system of equations was solved using the disruption decay technique. Calculations were carried out for the temperature of undisturbed helium T0 = 1.4 K. Simulation results were compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.