Abstract
A comprehensive three-dimensional simulation model was developed for entrained flow coal gasifiers. In the model, the numerical methods and the submodels conventionally used for the pulverized coal combustion modeling were used. An extended coal gas mixture fraction model with the Multi Solids Progress Variables (MSPV) method was applied to simulate the gasification reaction and reactant mixing process. Four mixture fractions were employed to separately track the variable coal off-gas from the coal devolatilization, char–O 2, char–CO 2, and char–H 2O reactions. The influence of turbulence on the gas properties was taken into account by the pdf model with a clipped Gaussian distribution function. A series of numerical simulations were performed for a 200 td −1 two-stage air blown entrained flow gasifier recently developed for the IGCC process. The predicted gas temperature profile and the exit gas composition were in general agreement with the measurements. Model simulations illustrating the importance of accounting for varying coal off-gas and the effects of turbulence/reaction affecting the prediction capability were also presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.