Abstract

Non-local thermodynamic equilibrium radiative transfer calculations have been performed to predict emission spectra from plasma heated by intense proton beams. Multilevel, steady-state atomic rate equations were solved self-consistently with the radiation field to determine excitation and ionization populations. Ion beam effects were, included in the rate equations. Proton-impact ionization cross sections were calculated using a plane wave Born approximation model with Hartree-Fock wave functions for the electrons. We examined the dependence of emission spectra on the temperature and thickness of the plasma. In addition, Kα satellite line spectra were computed to assess its potential as a temperature diagnostic. Calculated Kα spectral results are compared with recent Particle Beam Fusion Accelerator II experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call