Abstract

The sudden and unexpected Wenchuan earthquake (Ms = 8.0) occurred on the Longmen Shan Fault, causing a large number of casualties and huge property loss. Almost no definite precursors were reported prior to this event by Chinese scientists, who made a first successful prediction of the 1975 Haicheng earthquake (M = 7.3) in China. Does the unsuccessful prediction of the Wenchuan earthquake mean earthquake prediction is inherently impossible? In order to answer this question, the paper simulated inter- and co-seismic deformation, and recurrence of strong earthquakes associated with the Longmen Shan listric thrust fault by means of viscoelastic finite element method. The modeling results show that the computed interseismic strain accumulation in the lower crust beneath the Eastern Tibet is much faster than that in the other regions. In particular, the elastic strain energy density rate accumulates very rapid in and around the Longmen Shan fault in the depth above ~25 km that may explain why the great Wenchuan earthquake occurs in the region of such a slow surface deformation rate. The modeled coseismic displacements around the fault are consistent with surface rupture, aftershock distribution, and GPS measurement. Also, the model displays the slip history on the Longmen Shan fault, implying that the average earthquake recurrence interval on the Longmen Shan fault is very long, 3,300 years, which is in good agreement with the observed by paleoseismological investigations and estimates by other methods. Moreover, the model results indicate that the future earthquake could be evaluated based on numerical computation, rather than on precursors or on statistics. Numerical earthquake prediction (NEP) seems to be a promising avenue to a successful prediction, which will play an important part in natural hazard mitigation. NEP is difficult but possible, which needs well supporting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.