Abstract

Double-diffusive natural convective flow in an inclined rectangular enclosure with the shortest sides being insulated and impermeable is investigated numerically. Constant temperatures and concentration are imposed along the longest sides of the enclosure. In addition, a uniform magnetic field is applied perpendicular to the longest sides. Laminar regime is considered under steady-state condition. The transport equations for continuity, momentum, energy and species transfer are solved using the finite volume technique. The validity of the numerical code used is ascertained and good agreement was found with published results. The numerical results are reported for the effect of thermal Rayleigh number on the contours of streamline, temperature, and concentration. In addition, results for the average Nusselt and Sherwood numbers are presented and discussed for various parametric conditions. This study is done for constant Prandtl number, Pr = 0.7; aspect ratio, A = 2 and Lewis number, Le = 2. Computations are carried out for thermal Rayleigh number ranging from 10 3 to 5 × 10 5, inclination angle range of 0° ≤ γ ≤ 180°, dimensionless heat generation and absorption coefficients range of −40 ≤ Φ ≤ 40, buoyancy ratio range of −5 ≤ N ≤ 5 and the Hartmann number range of 0 ≤ Ha ≤ 70.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.