Abstract
Dispersion and nonlinear characteristics of microstructured silica fibres with a thin suspended core surrounded by three, four or six air holes have been studied theoretically in the wavelength range 1 – 2 μm. It has been shown that, owing to strong fundamental mode confinement near the core, the Kerr nonlinearity coefficient can exceed the nonlinearity coefficient of standard telecom fibre SMF28e by two orders of magnitude. The large waveguide contribution allows for effective group velocity dispersion management. Estimates are presented that demonstrate the feasibility of using suspended core fibre exhibiting Kerr nonlinearity for generating non-classical light: a state with squeezed quantum fluctuations in one of the quadrature components of a cw laser signal at a wavelength near 1.55 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.