Abstract
Dielectrophoresis (DEP) based microdevices offer a great number of significant advantages for the manipulation of biological particles such as cells, bacteria, viruses and DNA over traditional methods. To enable successfully dielectrophoretic manipulation of biological particles, electric fields of higher intensity need to be generated in order to increase the DEP forces. However, the introduced electric field may cause the joule heating effect and thermal denaturation of biological particles. This paper presents a numerical solution of the DEP force and the resulting electrical electrothermal driven fluid flow on a DEP microdevice. Theoretical investigations were made about the impact of electrothermal flow on DEP based microdevice. The fluid field was solved by coupling electrical, thermal, and mechanical equations. It is shown that under some typical experimental conditions of DEP based manipulation of biological particles, it is necessary to consider the possible influence of the electrothermal flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.