Abstract

For studying the changes of macro-physical field in the casting process of large-scale rare earth magnesium alloy, through the numerical simulation method, a two-dimensional axisymmetric multi-physical field coupling model was established by using the multi-physical simulation software COMSOL Multiphysics. The changes of temperature field, flow field, Lorentz force, and liquid fraction of large-size rare earth magnesium alloy with diameter of 750 mm under different electromagnetic parameters (magnetic field frequency and current intensity) in steady state of direct-chill (DC) casting were studied. The results reveal that using a magnetic field can reduce the temperature gradient and greatly accelerate the melt flow, the depth of the sump is reduced by about 50 mm. As the current intensity rises, the flow rate in the melt becomes accelerated, the sump depth becomes shallower, while the melt area with a liquid fraction of 0.5 to 0.63 increases. The Lorentz force rises as the magnetic field frequency increases, but the skin depth of the magnetic field decreases from 64.9 to 36.4 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.