Abstract

Improvements in manufacturing technologies require better modeling and simulation of metal cutting processes. A fully thermal-mechanical coupled finite element analysis (FEA) was applied to model and simulate the high speed machining of TiAl6V4. The development of serrated chip formation during high speed machining was simulated. The effects of rake angle on chip morphology, cutting force and the evolution of the maximum temperature at the tool rake were analyzed with the finite element model. The simulation results show that the segmented chip formation results in cutting force fluctuation. Although the segmentation frequency of the chip increases with the increase of the rake angle, the degree of segmentation becomes weaker and the cutting force fluctuation amplitude decreases. The predicted temperature distribution during the cutting process is consistent with the experimental results given in a literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.