Abstract

Many analyses relating to shearing of sheet products have already been reported, and an increasing number of elasto-plastic analyses evaluating the residual stress inside sheets have also appeared in recent years. However, because only a few papers have presented measured residual stress distributions, very few in-depth comparisons between calculated stress levels and experimental results are available. In this study, two simulations of the shearing process were carried out, considering the ductile fracture conditions of thin steel sheets. The simulation results of the cut surface shape and residual stress distribution in the vicinity of the cut surface were in good agreement with the experimental results. As another example, after punching a round hole to about half the sheet thickness, i.e., extruding a cylindrical protrusion, a round interlock was formed by subsequently stacking another sheet on the previous sheets. When compared with the X-ray diffraction data, it was found that a simple four-layer interlock simulation model could predict the residual stress distributions with accuracy close to the measured results. The abovementioned simulations are expected to be promising tools benefitting the performance of steel products by reducing residual stress levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.