Abstract
The paper briefly describes one numerical model for the simulation of fluid-structure coupled problems. The presented model is primarily intended to simulate the fluid-structure dynamic interaction in seismic conditions of civil engineering structures which are in direct contactwith fluid and which can often be encountered in engineering practice, for example: dams, water tanks (reservoirs), offshore structures, pipelines, water towers, etc. The model is based on the so called “partition scheme” where the equations governing the fluid’s pressures and the displacement of the structure are solved separately, with two distinct solvers. The SPH (Smooth Particle Hydrodynamics) method is used for the fluid and the standard FEM (Finite Element Method) is used for the structure, which can be made from reinforced concrete or steel and which can be simulated with shell or 3D elements. The model includes the most important nonlinear effects of reinforced concrete behaviour: yielding in compression and opening and propagation of cracks in tension (with tensile and shear stiffness of cracked concrete), as well as steel behaviour: yielding in compression and tension. The most important nonlinear effects of the fluid can also be simulated, like fluid viscosity, turbulence and cavitation. Some of the model’s possibilities are illustrated in a practical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.