Abstract
A numerical simulation of corrosion in a tube is performed with the solution velocity effect taken into account. A two dimensional tube, the cross-section of which is widening or narrowing with increase in distance, is considered. The velocity distribution in the tube is calculated with the Finite Volume Method (Open FOAM), and the derivatives of velocity with respect to the distance from the tube wall is determined at any location of the tube. The corrosion rate of the tube wall is estimated under the assumption that the corrosion rate depends on the velocity gradient, i.e. , it is estimated by solving the Laplace equation under the boundary conditions given with the polarization curves measured under various velocity gradients. The Boundary Element Method (3D-CAFE) is used to solve the Laplace equation. It is shown that the distribution of corrosion rate, including the maximum corrosion rate and its location, is different between the widening and narrowing tubes, even if the average velocities in the two tubes are equal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.