Abstract

Heat pipe is widely used as an efficient built-in heat exchanger for thermal management of high pulse and heat flux power supplies. Enhanced heat dissipation at the condensing side is an important issue in heat pipe research, where vapor velocity is an essential factor affecting the condensing heat transfer characteristics. This study adopted the CFD method to numerically simulate the condensation heat transfer of R134a flowing in a smooth pipe. The flow condensation heat transfer characteristics, such as film thickness and heat transfer coefficient (HTC), were investigated under vapor velocities v = 20–100 m/s and tube inclinations β =-90–90° Geometric and numerical heat transfer modeling is established in high vapor velocity flow condensation. The error of numerical simulation results and model validation is 10%. The HTC increases rapidly with the change in vapor velocity under 60 m/s, increasing the rate to 0.4. When the vapor velocity exceeds 60 m/s, the growth trend slows to 0.15, 37.5% of the original increase. At high vapor velocities above 60 m/s, the effect of pipe inclination on condensation heat transfer coefficient can be almost negligible. A modified empirical correlation suitable for high vapor velocities is proposed, which has higher predictive accuracy when the vapor velocity exceeds 80 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.