Abstract
After coal seam mining,stress change and rock movement in adjacent rock strata, make permeability and other fields change in adjacent coal seam. At the same time, due to the exploitation of coal seams, material exchange may occur in the adjacent coal seams. It also caused desorption of near coal seam near the mining working face. Recent years, with the development of coalbed methane mining technology under pressure relief in mining areas, it is necessary to carry out numerical simulation under coalbed methane mining conditions to realize the optimization of coalbed methane extraction simulation under mining conditions. The coupling effect of dynamic virtual well and variable permeability field advancing with the mining face is used to simulate the output of coalbed methane under mining conditions: the dynamic virtual well is used to advance with the mining face to characterize the influence of the working face on the material exchange of adjacent coal seams in the mining process; the use of variable permeability field to realize the influence of the permeability of the adjacent coal seam during the advancement of the working face. Finally, through the dynamic coupling of variable permeability field and dynamic virtual well with the mining face, the rapid pressure relief effect of high speed and short time on the adjacent layer under the influence of mining is characterized. The simulation results of the computer simulation software written by the algorithm show that when the mining effect is not considered, that is, when the algorithm does not consider the dynamic virtual well production and the variable permeability field, it is basically consistent with the commercial software simulation results, but for the consideration of mining condition is a situation that commercial software cannot simulate, and the simulation results of this algorithm are more consistent with the actual monitoring data of the mine. This method achieves numerical simulation of CBM under mining conditions by improving the mature algorithm, which can provide effective guidance for future CBM capacity prediction under mining conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.