Abstract

The CO2 absorption rate into aqueous N-methyldiethanolamine solutions was measured using a stirred cell with a flat gas-liquid interface. The measurements were performed in the temperature range of 293.15 to 333.15 K for various amine concentrations and CO2 partial pressures. A numerical model of mass-transfer with complex chemical reactions based on the film theory was developed to interpret the experimental results. The model predictions have been found to be in good agreement with the experimental values of CO2 absorption rates. A comparison is made between the enhancement factor predicted from the detailed model and the approximate solution of mass transfer equations with chemical reaction. The numerical results indicate that under the present experimental conditions, the effect of the reaction between CO2 and OH− on the observed mass transfer rates is negligible. The detailed mass transfer model was used for simulating the CO2 absorption process in terms of the enhancement factor under a variety of operating conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.