Abstract

Three-dimensional (3D) numerical flow simulations with a mass transfer cavitation model are performed to analyze cloud cavitation at two different flow configurations, i.e., hydrofoil and orifice flows, focusing on the turbulence and cavitation model interaction, including a mixture eddy viscosity reduction and cavitation model parameter modification. For the cavitating flow around the hydrofoil with circular leading edge, a good agreement to the measured shedding frequencies as well as local cavitation structures is obtained over a wide range of operation points, even with a moderate boundary layer resolution, i.e., utilizing wall functions (WF), which are found to be adequate to capture the re-entrant jet reasonably in the absence of viscous separation. Simulations of the orifice flow, that exhibit significant viscous single-phase (SP) flow separation, are analyzed concerning the prediction of choking and cloud cavitation. A low-Reynolds number turbulence approach in the orifice wall vicinity is suggested to capture equally the mass flow rate, flow separation, and cloud shedding with satisfying accuracy in comparison to in-house measurements. Local cavitation structures are analyzed in a time-averaged manner for both cases, revealing a reasonable prediction of the spatial extent of the cavitation zones. However, different cavitation model parameters are utilized at hydrofoil and orifice for best agreement with measurement data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.