Abstract
A variety of methods by which mechanical circulatory support (MCS) can be provided have been described. However, the haemodynamic benefits of the different methods have not been adequately quantified. The aim of this paper is to compare the haemodynamic effects of six forms of MCS by numerical simulation. Three types of ventricular assist device (VAD) are studied: positive displacement; impeller and a novel reciprocating-valve design. Similarly, three pumping modes are modelled: constant flow; counterpulsation and copulsation. The cardiovascular system is modelled using an approach developed previously, using the concentrated parameter method by considering flow resistance, vessel elasticity and inertial effects of blood in individual conduit segments. The dynamic modelling of displacement and impeller pumps is represented by VAD inlet/outlet flow-rate changes. The dynamics of the reciprocating-valve pump is modelled with a specified displacement profile. Results show that in each simulation, the physiological variables of mean arterial pressure and systemic flow are adequately maintained. Modulation of the impeller pump flow profile produces a small (5 mmHg) oscillatory component to arterial pressure, whereas the displacement and reciprocating-valve pumps generate substantial arterial pressure and flow pulsatility. The impeller pump requires the least power input, the reciprocating valve pump slightly more, and the displacement pump the most. The in parallel configuration of the impeller and displacement pump designs with respect to the left ventricle provides near complete unloading and can cause the aortic valve to remain closed throughout the entire cardiac cycle with the attendant risk of aortic valve leaflet fusion following prolonged support. The in series configuration of the reciprocating-valve pump avoids this shortcoming but activation must be carefully synchronized to the cardiac cycle to allow adequate coronary perfusion. The reciprocating-valve pump is associated with haemodynamic advantages and a favourable power consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.