Abstract
Conventional finite element (FE) analysis of bulk metal forming processes often breaks down due to severe mesh distortion. In recent years, meshless methods have been considerably developed for structural applications. The main feature of these methods is that the problem domain is represented by a set of nodes, and a finite element mesh is unnecessary. This new generation of computational methods can avoid time-consuming meshing and remeshing. A meshless method based on reproducing kernel particle method (RKPM) is applied to bulk metal forming analysis. The displacement shape functions are developed from a reproducing kernel (RK) approximation that satisfies consistency conditions. The shape function is modified to impose essential boundary conditions accurately and expediently. A material kernel function that deforms with the material is introduced to assure the stability of the RKPM shape function during large deformations. A program based on RKPM is developed to simulate two examples of bulk metal forming process such as ring compression and cold upsetting, and numerical results demonstrate the performance of the meshless method in bulk metal forming analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Modern Physics B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.