Abstract

AbstractThe effective design of earthquake-resistant structures and liquefaction mitigation techniques requires an improved understanding of the development and consequences of liquefaction. In this paper, the results from centrifuge experiments of structures with shallow foundations on liquefiable sand were used to evaluate the predictive capabilities of a state-of-the-practice numerical tool. Fully-coupled numerical simulations with the UBCSAND model implemented in FLAC-2D captured building settlements measured in these experiments reasonably well for one scaled input motion, mostly within factors of 0.7 and 1.8. The soil model captured the overall contribution of deviatoric displacement mechanisms and localized volumetric strains during partially drained cyclic loading. The primary limitation of the model became evident for slower rates of earthquake energy buildup, when the extent of soil softening and building displacement was overestimated by up to a factor of 4. The observations from recent case hi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.