Abstract
Single Snorkel Furnace (SSF) vacuum refining furnace is a novel external refining equipment for high clean steel production. RH is a molten steel refining technology developed by Rheinstahl-Heraeus company. Compared with the traditional RH furnace, the SSF furnace has the advantages of a simple structure, high refining efficiency, and low production cost. However, because the upward flow and the downward flow are in a single snorkel, the flow phenomenon is more complex than that in the RH device. Therefore, the gas–liquid two-phase flow law in SSF furnaces plays an important role in improving equipment efficiency and accurate control. In addition, the evolution and movement behavior of bubbles have an important influence on the two-phase flow. In this study, the Population Balance Model (PBM) model is employed to study the bubble properties, taking into account the effect of bubble coalescence and breakup on the flow field. The simulation results with this model are consistent with the experimental values, and the comparison with the results of the model without the PBM is revealed to be closer with less error. The results show that with the PBM model the flow field is more homogeneously distributed, the flow velocity is more stable, and the area distribution of the upward flow and downward flow in the snorkel is more symmetrical. In the case of this study, as the fluid level rises, the bubble diameter will increase due to the decrease in hydrostatic pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.